深入理解Java虚拟机(2)之十六-线程安全与锁优化

线程安全

一、Java语言中的线程安全

  1. 不可变

    在Java语言中(特指JDK 1.5以后,即Java内存模型被修正之后的Java语言),不可变(Immutable)的对象一定是线程安全的,无论是对象的方法实现还是方法的调用者,都不需要再采取任何的线程安全保障措施。

  2. 绝对线程安全

    一个类要达到“不管运行时环境如何,调用者都不需要任何额外的同步措施”通常需要付出很大的,甚至有时候是不切实际的代价。在Java API中标注自己是线程安全的类,大多数都不是绝对的线程安全。

  3. 相对线程安全

    相对的线程安全就是我们通常意义上所讲的线程安全,它需要保证对这个对象单独的操作是线程安全的,我们在调用的时候不需要做额外的保障措施,但是对于一些特定顺序的连续调用,就可能需要在调用端使用额外的同步手段来保证调用的正确性。

    在Java语言中,大部分的线程安全类都属于这种类型,例如VectorHashTableCollectionssynchronizedCollection()方法包装的集合等。

  4. 线程兼容

    线程兼容是指对象本身并不是线程安全的,但是可以通过在调用端正确地使用同步手段来保证对象在并发环境中可以安全地使用,我们平常说一个类不是线程安全的,绝大多数时候指的是这一种情况。Java API中大部分的类都属于线程兼容的,如与前面的VectorHashTable相对应的集合类ArrayListHashMap等。

  5. 线程对立

    线程对立是指无论调用端是否采取了同步措施,都无法在多线程环境中并发使用的代码。由于Java语言天生就具备多线程特性,线程对立这种排斥多线程的代码很少出现,而且通常都是有害的,应当尽量避免。

二、线程安全的实现方法

  1. 互斥同步(Mutual-Exclusion & Synchronization)

    互斥同步是常见的一种并发正确性保证手段。同步时是指在多个线程并发访问共享数据时,保证共享数据在同一个时刻只能被一个(或者是一些,使用信号量的时候)线程使用。而互斥是实现同步是一种手段,临界区(Critical Section)、互斥量(Mutex)和信号量(Semaphore)都是主要的互斥实现方式。因此,在这4个字里面,互斥是因,同步是果;互斥是方法,同步时目的。

    在Java中,最基本的互斥同步手段就是synchronized关键字,synchronized关键字经过编译之后,会在同步块的前后分别形成monitorentermonitorexit这两个字节码指令,这两个字节码都需要一个reference类型的参数来指明要锁定和解锁的对象。如果Java程序中的synchronized明确指定了对象参数,那就是这个对象的reference;如果没有明确指定,那就根据synchronized修饰的是实例方法还是类方法,去取对应的对象实例或Class对象来作为锁对象。

    根据虚拟机规范的要求,在执行monitorenter指令时,首先要尝试获取对象的锁。如果这个对象没被锁定,或者当前线程已经拥有了那个对象的锁,把锁的计数器加1,相应的,在执行monitorexit指令时会将锁计数器减1,当计数器为0时,锁就被释放。如果获取对象锁失败,那当前线程就要阻塞等待,直到对象锁被另外一个线程释放为止。

    在虚拟机规范对monitorentermonitorexit的行为描述中,有两点是需要特别注意的。首先,synchronized同步块对同一条线程来说是可重入的,不会出现自己把自己锁死的问题。其次,同步块在已进入的线程执行完之前,会阻塞后面其他线程的进入。Java的线程是映射到操作系统的原生线程之上,如果要阻塞或唤醒一个线程,都需要操作系统来帮忙完成,这就需要从用户态转换到核心态,因此状态转换需要耗费很多的处理器时间。对于代码简单的同步块(如被synchronized修饰的getter()setter()方法),状态转换消耗的时间有可能比用户代码执行的时间还要长。所以synchronized是Java语言中一个重量级(Heavyweight)的操作。虚拟机本身也会进行一些优化,譬如在通知操作系统阻塞线程之前加入一段自旋等待过程,避免频繁地切入核心态之中。

    除了synchronized之外,还可以使用java.util.concurrent包中的重入锁(ReentrantLock)来实现同步,在基本用法上ReentrantLocksynchronized很相似,都具备一样的线程重入特性,只是代码写法上有点区别,一个表现为API层面的互斥锁(lock()unlock()方法配合try/finally语句块来完成),另一个表现为原生语法层面的互斥锁。不过相比synchronizedReentrantLock增加了一些高级功能,主要有以下3项:

    • 等待可中断:指当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情,可中断特性对处理执行时间非常长的同步块很有帮助。
    • 公平锁:指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁;而非公平锁则不保证这一点,在锁被释放时,任何一个等待锁的线程都有机会获得锁,synchronized中的锁是非公平的,ReentrantLock默认情况下也是非公平的,但是可以通过带布尔值的构造函数要求使用公平锁。
    • 锁可以绑定多个条件:指一个ReentrantLock对象可以绑定多个Condition对象,而在synchronized中,锁对象的wait()notify()notifyAll()方法可以实现一个隐含的条件,如果要和多于一个的条件关联的时候,就不得不额外添加一个锁,而ReentrantLock则无须这么做,只需要多次调用newCondition()方法即可。
  2. 非阻塞同步(Non-Blocking Synchronization)

    互斥同步最主要的问题就是进行线程阻塞和唤醒所带来的性能问题,因此这种同步也被称为阻塞同步(Blocking Synchronization)。从处理问题的方式上说,互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施(例如加锁),那就肯定会出现问题,无论共享数据是否真的会出现竞争,它都要进行加锁(这里讨论概念模型,实际上虚拟机会优化掉很大一部分不必要的加锁)、用户态核心态转换、维护锁计数器和检查是否有被阻塞的线程需要唤醒等操作。随着硬件指令集的发展,有了另一个选择:基于冲突检测的乐观并发策略,通俗地说,就是先进行操作,如果没有其他线程争用共享数据,那操作就成功了;如果共享数据有争用,产生了冲突,那就再采取其他的补偿措施(最常见的补偿措施就是不断地重试,直到成功为止),这种乐观的并发策略的许多实现不需要把线程挂起,因此这种同步操作称为非阻塞同步。

    为什么说乐观并发策略需要“硬件指令集的发展”才能进行,因为我们需要操作和冲突检测具有原子性,只能靠硬件来完成这件事,硬件保证一个从语义上看起来需要多次操作的行为只通过一条处理器指令就能完成。这类指令常用的有:

    • 测试并设置(Test-and-Set)
    • 获取并增加(Fetch-and-Increment)
    • 交换(Swap)
    • 比较并交换(Compare-and-Swap,下文称为CAS)
    • 加载链接/条件存储(Load-Linked/Store-Conditional),下文称LL/SC

    其中,前3条指令是20世纪就存在于大多数指令集中的处理器指令,后面两条是线代处理器新增的,而且这两条指令的功能和目的是类似的。

    CAS指令需要3个操作数,分别是内存位置(在Java中可以简单理解为变量的内存地址,用V表示)、旧的预期值(用A表示)、和新值(用B表示)。CAS指令执行时,当且仅当V符合旧预期值A时,处理器用新值B更新V的值,否则就不执行更新,但无论是否更新V的值,都会返回V的旧值,上述的处理过程是一个原子操作。

    尽管CAS看起来很美,但显然这种操作无法涵盖互斥同步的所有使用场景,并且CAS从语义上来说也不是完美的,存在这一一个逻辑漏洞:如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然为A值,那我们就能说它的值没有被其他线程修改过吗?如果在这段期间它的值曾经被改为B,后来又被改为A,那CAS操作就会误认为它从来没有被改变过,这个漏洞称为CAS操作的“ABA”问题。

  3. 无同步方案

    要保证线程安全,并不是一定要进行同步,两者没有因果关系。同步只是保证共享数据争用时正确性的手段,如果一个方本来就不涉及共享数据,那自然就不需要任何同步措施保证其正确性,因此有一些代码天生就是线程安全的,以下为其中两类:

    • 可重入代码(Reentrant Code):这种代码也叫纯代码(Pure Code),可以在代码执行的任何时刻中断它,转而去执行另一段代码(包括递归调用它本身),而在控制权返回之后,原来的程序不会出现任何错误。相对线程安全,可重入性是更基本的特性,它可以保证线程安全,即所有可重入的代码都是线程安全的,但不是所有线程安全的代码都是可重入的。

      可重入代码有一些共同的特性,例如不依赖存储在堆上的数据和公共的系统资源、用到的状态量都是由参数传入、不调用非可重入的方法等。我们可以通过一个简单的方法判断可重入性:如果一个方法,它的返回结果是可以预测的,只要输入了相同的数据,就能返回相同的结果,那就满足可重入的要求,当然也是线程安全的。

    • 线程本地存储(Thread Local Storage):如果一段代码所需的数据必须与其他代码共享,那就看看这些共享数据的代码能否在同一个线程中执行?如果能保证,我们就可以把共享数据的可见范围限制在一个线程内,这样,无需同步也能保证线程之间不会出现数据争用的问题。

      符合这种特性的应用并不少见,大部分使用消费队列的架构模式(如“生产者-消费者”模式)都会将产品的消费过程尽量在一个线程内消费完,其中一个最经典的应用实例就是经典Web交互模型中的“一个请求对应一个服务器线程”(Thread-per-Request)的处理方式,这种处理方式的广泛应用使得很多服务器Web应用都可以使用线程本地存储解决线程安全问题。

锁优化

一、自旋锁与自适应自旋

互斥同步中,对性能影响最大的是阻塞的实现,线程挂起和恢复都需要转入内核态中完成,这些操作给系统的并发能力产生很大的压力。同时,虚拟机的开发团队注意到在许多应用中,共享数据的锁定状态只会持续很短的时间,为了这段时间去挂起和恢复现场并不值得。如果物理机器上有一个以上的处理器,能让两个或两个以上的线程同时并行执行,我们就可以让后面请求锁的那个线程“稍等一下”,但不放弃处理器的执行时间,看看持有锁的线程是否很快会释放锁。为了让线程等待,我们只需让线程执行一个忙循环(自旋),这项技术就是所谓的自旋锁。

自旋等待不能代替阻塞,且先不说对处理器数量的要求,自旋等待本身虽然避免了线程切换的开销,但它是要占用处理器时间的,因此,如果锁被占用的时间很短,自旋等待的效果就会非常好,反之,如果锁占用的时间很长,那么自旋的线程只会拜拜消耗处理器资源,而不会做任何有用的工作,反而会带来性能上的浪费。因此,自旋等待的时间必须要有一定的限度,如果自旋超过了限定的次数仍然没有成功获得锁,就应当使用传统的方式去挂起线程了。自旋次数的默认值是10次,用户可以使用参数-XX:PreBlockSpin来更改。

JDK 1.6中引入了自适应的自旋锁。自适应意味着自旋的时间不再固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自选等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能会再次成功,进而它将允许自旋等待持续相对更长的时间,比如100次循环。另外,如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能省略掉自旋过程,以避免浪费处理器资源。有了自适应自旋,随着程序运行和性能监控信息的不断完善,虚拟机对程序锁的状况预测就会越来越准确。

二、锁消除

锁消除是指虚拟机即时编译器在运行时,对一些代码要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。锁消除的主要依据是来源逃逸分析的数据支持,如果判断在一段代码中,堆上的所有数据都不会逃逸出去从而被其他线程访问到,那就可以把它们当做栈上数据对待,认为它们是线程私有的,同步加锁自然无须进行。

三、锁粗化

原则上,在编写代码的时候,总是推荐奖同步块的作用范围限制得尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变小,如果存在锁竞争,那等待锁的线程也能尽快拿到锁。

大部分情况下,上面的原则都是正确的,但是如果一系列的连续操作都是对同一个对象反复加锁和解锁,甚至加锁操作是出现在循环体中的,那即使没有线程竞争,频繁地进行互斥同步操作也会导致不必要的性能损耗。

四、轻量级锁

轻量级锁是JDK 1.6之中加入的新型锁机制,名字中的“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的,因此传统的锁机制就称为“重量级”锁。首先需要强调一点的是,轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。

要理解轻量级锁以及后面的偏向锁的原理和运作过程,必须从HotSpot虚拟机的对象(对象头部分)的内存布局开始介绍。HotSpot虚拟机的对象头(Object Header)分为两部分,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄(Generational GC age)等,这部分数据的长度在32位和64位的虚拟机中分别为32bit和64bit,官方称Mark Word,它是实现轻量级锁和偏向锁的关键。另外一部分用于存储指向方法区对象类型数据的指针,如果是数组对象的话,还有一个额外的部分用于存储数组长度。

对象头信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间。例如,在32位的HotSpot虚拟机中对象未被锁定的状态下,Mark Word的32bit空间中的25bit用于存储对象哈希码(HashCode),4bit用于存储对象分代年龄,2bit用于存储锁标志位,1bit固定为0,在其他状态(轻量级锁定、重量级锁定、GC分代、可偏向)下对象的存储内容见表:

存储内容 标志位 状态
对象哈希码、对象分代年龄 01 未锁定
指向锁记录的指针 00 轻量级锁定
指向重量级锁的指针 10 膨胀(重量级锁定)
空,不需要记录信息 11 GC标记
偏向线程ID、偏向时间戳、对象分代年龄 01 可偏向

在代码进入同步块的时候,如果此同步对象没有被锁定(锁标志位为“01”状态),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝(官方把这份拷贝加了一个Displaced前缀,即Displaced Mark Word),这时候线程堆栈与对象头的状态如图:

轻量级锁CAS操作之前堆栈与对象的状态

然后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针。如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位(Mark Word的最后2bit)将转变为“00”,即表示该对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如图:

轻量级锁CAS操作之后堆栈与对象的状态

如果这个更新失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果只说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行,否则说明这个对象已经被其他线程抢占 了,如果有两条以上的线程争用同一个锁,那轻量级锁就不再有效,要膨胀为重量级锁,锁标志位变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。

上面描述的是轻量级锁的加锁过程,它的解锁过程也是通过CAS操作来进行的,如果对象的Mark Word仍然指向着线程的锁记录,那就用CAS操作把对象当前 Mark Word和线程中复制的Displaced Mark Word替换回来,如果替换成功,整个同步过程就完成了。如果替换失败,说明有其他线程尝试获取过该锁,那就要在释放锁的同时,唤醒被挂起的线程。

轻量级锁能提升同步性能的依据是“对于绝大部分的锁,在整个同步周期内都不存在竞争的”,这是一个经验数据。如果没有竞争,轻量级锁使用CAS操作避免互斥量是开销,但如果存在锁竞争,除了互斥量的开销外,还额外发生了CAS操作,因此在有竞争的情况下,轻量级锁会比传统的重量级锁更慢。

五、偏向锁

偏向锁也是JDK 1.6中引入的一项锁优化,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不做了。

偏向锁的“偏”,就是偏心的“偏”、偏袒的“偏”,它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁没有被其他的线程获取,则持有偏向锁的线程将永远不需要再进行同步。

假设当前虚拟机启用了偏向锁,那么,当锁对象第一次被线程获取的时候,虚拟机将会把对象头中的标志位设为“01”,即偏向模式。同时使用CAS操作把获取到这个锁的线程的ID记录在对象的Mark Word之中,如果CAS操作成功,持有偏向锁的线程以后每次进入这个锁相关的同步块时,虚拟机都可以不再进行任何同步操作(例如LockingUnlocking及对Mark WordUpdate等)。

当有另外一个线程去尝试获取这个锁时,偏向模式就宣告结束。根据锁对象目前是否处于被锁定的状态,撤销偏向(Revoke Bias)后恢复到未锁定(标志位为“01”)或轻量级锁定(标志位为“00”)的状态,后续的同步操作就如上面介绍轻量级锁那样执行。偏向锁、轻量级锁的状态转化及对象Mark Word的关系如图:

偏向锁、轻量级锁的状态转化及对象MarkWord的关系

偏向锁可以提高带有同步但无竞争的程序性能。它同样是一个带有效益权衡(TradeOff)性质的优化,也就是说,它并不一定总对程序运行有利,如果程序中大多数的锁总是被多个不同的线程访问,那偏向模式就是多余的。在具体问题具体分析的前提下,有时候使用参数-XX:-UseBiasedLocking来禁止偏向锁优化反而可以提高性能。


该文章来源《深入理解Java虚拟机》


以上

LeoQin wechat
欢迎您扫一扫上面的微信公众号,订阅我的博客!
0%