深入理解Java虚拟机(2)之十一-虚拟机类加载机制

类加载的时机

类加载的时机

加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也称为动态绑定或晚期绑定)。

什么情况下需要开始类加载过程的第一个阶段:加载?Java虚拟机规范并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把我。但是对于初始化阶段,虚拟机规范则是严格规定了有且只有5种情况必须立即对类进行“初始化”(加载、验证、准备在此之前):

  1. 遇到newgetstaticputstaticinvokestatic这4条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这4条指令的最常见的Java代码场景是:使用new关键字实例化对象的时候、读取或设置一个类的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。
  2. 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要进行先触发其初始化。
  3. 当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
  4. 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的类),虚拟机会先初始化这个主类。
  5. 当使用JDK 1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStaticREF_putStaticREF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。

类加载的过程

Java虚拟机中类加载的全过程,也就是加载、验证、准备、解析和初始化这5个阶段所执行的具体动作。

1、加载

“加载”是“类加载”(Class Loading)过程的一个阶段,在加载阶段,虚拟机需要完成以下3件事:

  • 通过一个类的全限定名来获取定义此类的二进制字节流。

  • 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。

  • 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

相对于类加载过程的其他阶段,一个非数组类的加载阶段(加载阶段中获取类的二进制字节流的动作)是开发人员可控性最强的,因为加载阶段既可以使用系统提供的引导类加载器来完成,也可以由用户自定义的类加载器去完成,开发人员可以通过定义自己的类加载器去控制字节流的获取方式(即重写一个类加载器的loadClass()方法)。

对于数组类。数组类本身不通过类加载器创建,它是由Java虚拟机直接创建的。但数组类与类加载器仍然有很密切的关系,因为数组类的元素类型(Element Type,指的是数组去掉所有维度的类型)最终靠类加载器去创建,一个数组类的创建遵循以下规则:

  • 如果数组的组件类型(Component Type,指的是数组去掉一个维度的类型)是引用类型,那就递归采用以上的加载过程去加载这个组件类型,数组将在加载该组件类型的类加载器的类名称空间上被标记。

  • 如果数组的组件类型不是引用类型(例如int[]数组),Java虚拟机将会把数组标记为与引导类加载器关联。

  • 数组的可见性与它的组件类型的可见性一致,如果组件不是引用类型,那数组类的可见性默认为public。

加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,方法区中的数据存储格式由虚拟机实现自行定义,虚拟机规范未规定此区域的具体数据结构。然后在内存中实例化一个java.lang.Class类的对象(没有明确规定是在Java堆中,对于HotSpot虚拟机而言,Class对象比较特殊,虽然是对象,但是存放在方法区里面),这个对象将作为程序访问方法区中的这些类型数据的外部接口。

加载阶段与连接阶段的部分内容(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段中的动作,仍然属于连接阶段的内容,这两个阶段的开始时间仍然保持着固定的先后顺序。

2、验证

验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。

  1. 文件格式验证

    这一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本虚拟机处理。包含以下验证点:

    • 是否以魔数0xCAFEBABE开头。

    • 主、次版本号是否在当前虚拟机处理的范围内。

    • 常量池的常量中是否有不被支持的常量类型(检查常量的tag标志)。

    • 指向常量的各种索引值中是否有指向不存在的常量或不符合类型的常量。

    • CONSTANT_Utf8_info型的常量中是否有不符合UTF8编码的数据。

    • Class文件中各个部分及文件本身是否有被删除的或附加的其他信息。

    ……

    该验证阶段主要目的是保证输入的字节流能正确解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段的验证后,自己了才会进入内存的方法区中进行存储,所以后面的3个验证阶段全部是基于方法区的存储结构进行的,不会再直接操作字节流。

  2. 元数据验证

    第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求,包含以下验证点:

    • 这个类是否有父类(除了java.lang.Object之外,所有的类都应当有父类)。

    • 这个类的父类是否继承了不被允许被继承的类(被final修饰的类)。

    • 如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法。

    • 类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的final字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型不同等)。

    ……

  3. 字节码验证

    主要目的是通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型做完校验后,这个阶段将对垒的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的事件,例如:

    • 保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似:在操作栈中放置一个int类型的数据,使用时却按long类型来加载入本地变量表。

    • 保证跳转指令不会跳转到方法体以外的字节码指令上。

    • 保证方法体中的类型转换是有效的。

    ……

  4. 符号引用验证

    此校验发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三个阶段——解析阶段中发生。符号引用验证可以看做是对类自身以外(常量池中各种符号引用)的信息进行匹配性校验,通常需要校验已下内容:

    • 符号引用中通过字符串描述的全限定名是否能找到对应的类。

    • 在指定类中是否存在符合方法的字段描述符以及简单名称所描述的方法和字段。

    • 符号引用中的类、字段、方法的访问性(private、protected、public、default)是否可被当前类访问。

    ……

3、准备

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中被分配。这里的类变量仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆。

假设一个类变量定义为:

1
public static int value = 123;

那么变量value在准备阶段过后初始值为0而不是123,因为这时候尚未开始执行任何Java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器<clinit>()方法之中,索引把value赋值为123的动作将在初始化阶段才会执行。

如果类字段的字段属性表中存在ConstantValue属性,那么准备阶段变量value就会被初始化为ConstantValue属性所指定的值,假设上面的类变量value定位变为:

1
public static final int value = 123;

编译时javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据ConstantValue的设置将value赋值为123。

4、解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。

  • 符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用于虚拟机实现的内存布局无关,引用的目标并不一定已经加载到内存中。各种虚拟机实现的内存布局可以各不相同,但是它们能够接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。
  • 直接引用(Direct References):直接引用可以是直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同,如果有了直接引用,那引用的目标必定已经在内存中存在。

虚拟机规范并未规定解析阶段发生的具体时间,只要求在执行anewarraycheckcastgetfieldgetstaticinstanceofinvokedynamicinvokeinterfaceinvokespecialinvokestaticinvokevirtialldcldc_wmultianewarrynewputfieldputstatic这16个用于操作符号引用的字节码指令之前,先对它们所使用的符号引用进行解析。所以虚拟机实现可以根据需要来判断到底是在类被加载器加载时对常量池中的符号引用进行解析,还是等到一个符号引用将要被使用前采取解析它。

解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行,分别对应常量池的CONSTANT_Class_infoCONSTANT_Fieldref_infoCONSTANT_Methodref_infoCONSTANT_InterfaceMethodref_infoCONSTANT_MethodType_infoCONSTANT_MethodHandle_infoCONSTANT_InvokeDynamic_info7种常量类型。

5、初始化

类初始化阶段是类加载过程的最后一步,前面的类加载过程中,除了在加载阶段用户程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码。

初始化阶段是执行类构造器<clinit>()方法的过程。

  • <clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序决定的,静态语句块中只能访问定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但不能访问。
  • <clinit>()方法与类构造函数(或者说实例构造器<init>()方法)不同,它不需要显式地调用父类构造器,虚拟机会保证在子类的<clinit>()方法执行之前,父类的<clinit>()方法已经执行完毕。因此在虚拟机中第一个被执行<clinit>()方法的类肯定是java.lang.Object
  • 由于父类的<clinit>()方法先执行,也就意味着父类中定义的静态语句块要优于子类的变量赋值操作。
  • <clinit>()方法对于类或接口来说不是必需的,如果一个类没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。
  • 接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成<clinit>()方法。但接口和类不一样的是,执行接口的<clinit>()方法不需要先执行父接口的<clinit>()方法。只有当父接口中定义的变量使用时,父接口才会初始化。另外接口的实现类在初始化时也一样不会执行接口的<clinit>()方法。
  • 虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,知道活动线程执行<clinit>()方法方法完毕。

该文章来源《深入理解Java虚拟机》


以上

LeoQin wechat
欢迎您扫一扫上面的微信公众号,订阅我的博客!
0%